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ABSTRACT 
Transfer functions of acoustical systems usually include significant phase lag due to propagation delay.   When this 
delay varies from one transfer function to another, basic mathematical operations such as averaging and 
interpolation produce unusable results. A calculation method is presented which produces much better results, using 
well-known mathematical operations.  Applications of the technique include loudspeaker complex directional 
response characterization, complex averaging, and DSP filter design for loudspeaker steering. 

 
0 INTRODUCTION 
 
The phase response of a loudspeaker typically consists of a nearly 
minimum-phase characteristic plus excess phase lag due to the 
propagation time from the source to the microphone.  Put another 
way, loudspeakers exhibit a relatively short impulse response that 
does not begin at zero time. 
 
This results in rapidly wrapping phase plots at high frequencies.  
Phase wrap can be minimized during the measurement process by 
adjusting the offset delay of the measurement system; but if the 
objective of a series of measurements is to characterize variations 
of phase response, the relative differences in arrival time must be 
preserved.  Inevitably, some of the measurements will exhibit 
significant wrapping.   
 
Phase wrapping is not necessarily detrimental, in and of itself.  
However, it can lead to some misleading results when complex 
transfer functions are subjected to mathematical operations such as 
interpolation, smoothing, and averaging.   
 
There are several tasks that call for acoustical transfer functions to 
be interpolated, smoothed or averaged.  These tasks include 
complex directional response characterization, real-time 

measurement and tuning of loudspeaker systems, conversion of 
data for use in loudspeaker modeling programs, and the application 
of complex smoothing for the purpose of frequency-scaled time 
windowing. The algorithm presented in this paper was developed 
as part of a project to measure and represent the three-dimensional 
complex response of loudspeakers.  That project is the topic of a 
paper by William Hoy and Charles McGregor [1]. 
 
0.1 Complex Polar Response 
 
A source’s directionality is directly related to the physical shape 
and size of the wave front it emits.  A point source has no 
directionality.  If an acoustical source has size, it is not possible to 
remain equidistant from it while sweeping a measurement 
microphone through a circular arc to measure its polar response 
(except in the case of a spherical source).  Consequently, the 
propagation time from real sources will vary with direction.  In 
fact, the particular way in which propagation time varies with 
direction is the most critical piece of information provided by 
complex polars.  This information is required for accurate 
interference calculations, by which the performance of arrays of 
loudspeakers can be predicted. 
 

http://www.aes.org/


GUNNESS  TRANSFER FUNCTION INTERPOLATION 

There has been much spirited debate within the Audio Engineering 
Society in the last decade concerning the angular resolution 
required for complex polar data.  Various conclusions have been 
reached, ranging from 10 degrees to 0.5 degrees per data point.  
Even without consulting transcripts of these debates, one can 
reasonably assume that proponents of the finer resolutions have no 
faith in the effectiveness of interpolation.  Such mistrust is not 
unfounded, as the following example illustrates: 
 

 

Figure 1: Magnitude and Impulse Response at 15 & 20 degrees 
Off Axis 

 
Figure 1 presents two response measurements of a highly 
directional high frequency horn, taken at 15 degrees and 20 
degrees off axis.  This particular device and these off-axis angles 
were selected because they represent a practical worst case, as far 
as the angular resolution required.  The impulse response chart 
shows clearly that the propagation time varied by about 0.07 ms 
between the two measurements. 
 
If we apply simple linear interpolation to estimate the complex 
transfer function at the midpoint between the two (their average) 
we get an impulse response which lies between the impulse 
responses of the two measurements at every point, as shown in 
Figure 2.  The Fourier transform of that impulse response (the 
frequency response), on the other hand, does not lie between the 
original frequency responses.  In intuitive terms, adding the two 
transfer functions and dividing by two shows the interference of 
the two functions, rather than estimating the midpoint of a 
transition from one to the other.   
 
The interpolated impulse response consists of ½-amplitude arrivals 
at the times of the original impulses.  However, what is required is 
a single impulse, similar in shape to the original impulses, but 
occurring at a time halfway between the two original impulses. 
Furthermore, the interpolated magnitude response should lie 
between the two original magnitude responses. 
 
 

 

Figure 2: Linear Interpolation of Complex Transfer Function 

1  AN ALGORITHM FOR INTERPOLATING TRANSFER 
FUNCTIONS 
 
Conceptually, the interpolation of loudspeaker transfer functions 
can be divided into two separate problems: interpolating the 
propagation delay, and interpolating the characteristic complex 
frequency response (which is to say, the shape of the impulse).  If 
we can eliminate the difference in arrival time, the phase response 
of the two transfer functions will become similar enough that 
interpolation is effective. 
 
1.1  Using the Cross-correlation Function to Eliminate 
Excess Delay 
 
The cross-correlation of two impulse response functions gives an 
indication of their similarity for various offset times. If the shapes 
of the impulse responses of the two functions are similar enough, 
then the cross-correlation function will have a well-defined peak 
that indicates the relative arrival time, or “excess delay”.    
 
Cross-correlation is defined as the convolution of one sequence 
with a reverse-order second sequence.  In the present case, the 
sequences are impulse responses.  The cross-correlation can be 
efficiently calculated in the frequency domain by multiplying the 
Fourier transform of the first impulse response by the complex 
conjugate of the Fourier transform of the second response: then 
taking the inverse Fourier transform (IFT) of the result.  In pseudo-
code, this looks like: 
 
Cross-Correlation = IFT(FFT(Impulse1)·Conj(FFT(Impulse2) ) )                   
 
  (1) 
 
For the particular case of interpolating complex polar response, 
adjacent transfer functions should be extremely similar.  So, the 
cross-correlation function would be expected to have a well-
defined peak.  Figure 3 shows the cross correlation of the two 
transfer functions illustrated in Figure 1, indicating an excess delay 
of .075 ms. 
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Figure 3: Cross-correlation of 15-degree and  20-degree 
Transfer Functions 

The propagation time difference should be backed out of the ”late” 
transfer function.  This is accomplished by synthesizing a transfer 
function representing the excess delay.  This transfer function will 
have unity magnitude and a phase response corresponding to the 
delay.  The complex value at each frequency is defined by, 
 

( ) ( )eee tjttF ωωω −+−= sincos),( ,  (2) 

 
where ω is 2πf, and te is the excess delay. 
 
The late transfer function is divided by the excess delay transfer 
function.  The resulting transfer function is no longer late, but is 
approximately synchronous with the early transfer function.  In 
fact, its phase response would be expected to be as similar as 
possible to that of the early transfer function. 
 
Figure 4 shows the two example impulse responses, as well as the 
phase response (unwrapped for readability) after removing the 
excess delay. 
 

 

Figure 4: Transfer Functions with Excess Delay Removed 

 
 
We are now ready to interpolate the impulse response. 
 

1.2  Geometric Interpolation 
 
The requirements for an effective interpolation method are that: 
 

a) The interpolated magnitude response should vary 
logarithmically from one magnitude response to the 
other.  Effectively, we would like to linearly interpolate 
decibel values. 

b) The phase response should interpolate correctly 
regardless of wrapping.  Correct results will be 
evidenced by an impulse shape that morphs smoothly 
from one impulse shape to the other. 

 
These requirements are met if we adopt an interpolation method 
that corresponds to the geometric mean, rather than the arithmetic 
mean. For purposes of illustration, let’s compare the linear mean of 
two quantities (interpolation of the midpoint) to the geometric 
mean: 
 

2
)(_ 21 ValueValueMeanLinear +

=   (3) 

 

21 *_ ValueValueMeanGeometric =   (4) 

 
Consider two complex quantities which differ by nearly 180 
degrees in phase: 1 + 0j, and -0.9 - 0.1j.  The linear mean of these 
two values is (1 – 0.9 – 0.1j) / 2, or 0.05 –0.05j.  The magnitude of 
this result is much smaller than the magnitude of either of the 
original values, so it obviously fails to satisfy requirement (a).  The 
geometric mean is j1 , or .05 - .95j.  This result falls 

nicely between the original values in both magnitude and phase.  
Working a few more examples will demonstrate that the geometric 
mean satisfies both requirements, as long as the phase difference is 
no greater than π.   

.09. −−

 
In order to exploit the desirable behavior of the geometric mean, 
we must expand the averaging equation to an interpolation 
equation: 
 

ratio

Value
ValueValueionInterpolatGeometric ⎟⎟

⎠

⎞
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⎝

⎛
=

1

2
1 *_ ,         (5) 

 
where ratio is the fraction of interpolation (if the ratio is 0.0, the 
function returns Value1; if the ratio is 1.0, the function returns 
Value2).  This expression should not be reduced to Value1

(1-

ratio)·Value2
ratio, because the reduced expression only provides valid 

results for phase differences of less than π/2 and absolute phase of 
+/- π/2; whereas, equation (5) is valid for any absolute phase value, 
and phase differences of +/- π. 
 
When geometric interpolation is applied to the example transfer 
functions, the result is as shown in Figure 5. 
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Figure 5: Aligned and Interpolated Transfer Functions 

 
1.3  Interpolating the Propagation Delay 
 
Interpolating the propagation delay is a simple matter.  We simply 
work the method described in section 1.1, in reverse.  For the delay 
we use the excess delay multiplied by the interpolation ratio.  For 
the example, we multiply the interpolated result by the transfer 
function equating to ½ of .075 ms, or .0375 ms..  The interpolated 
response is shown in Figure 6, overlaid with the actual measured 
response it estimates. In this example, the estimated and measured 
results are nearly identical. 
 

 

Figure 6:  Interpolated vs Measured Response 

 
1.4  Additional Techniques 
 

It has been found that for marginally matched transfer functions, 
identification of the excess delay is accomplished more reliably if 
the envelope of the cross-correlation function is used, rather than 
the cross-correlation itself.  The envelope may be calculated by 
treating the cross-correlation as an impulse response, and 
calculating its corresponding analytic impulse [2].  The envelope 
of the cross-correlation is the magnitude of its analytic impulse. 
 
The cross-correlation result could be thought of as being weighted 
by the response magnitudes of different frequencies.  The 
frequencies at which the response magnitude is relatively large 
have a greater effect on the cross-correlation result than do the 
frequencies at which the response magnitude is relatively small.  
For most loudspeaker applications this is a desirable effect, 
because it naturally weights more heavily the frequency range over 
which the loudspeaker operates effectively.  However, in some 
applications it may be desirable to equalize the levels of the 
various frequencies before calculating the cross-correlation.  In the 
field of computer imaging, the function so obtained is referred to 
as the “phase correlation” [3], because only the phase of the input 
functions affects the result - the magnitude response is effectively 
ignored. 
 
 
1.5  Limitations of the Algorithm 
 
The method described in this paper is an algorithm, not a 
transform.  It falls far short of the level of robustness expected of a 
mathematical transform.  It only results in good estimates if: 
 

a) The two transfer functions to be interpolated are similar 
to each other. 

b) Each of the transfer functions can be characterized as 
having a particular arrival time (the impulse response is 
sufficiently focused).   

 
A particular condition that violates the second requirement is when 
an impulse response contains two discreet arrivals, nearly equal in 
level.  Generally, the polar response of a single loudspeaker 
satisfies both constraints.  But, if a loudspeaker consists of multiple 
sources, they should be measured separately and mathematically 
summed to produce the net acoustical response.  A complete 
treatment of this process is given in Hoy/McGregor [1]. 
 
 
2  OTHER APPLICATIONS 
 
In addition to loudspeaker polar response, there are several other 
audio-related applications of this technique.   
 
 
2.1  Measurement Averaging 
 
Averaging is often helpful when applied to acoustical 
measurements.  Most commonly, it is used to increase the signal to 
noise ratio of a measurement.  It can also be used with a source-
independent measurement system such as SIA SmaartLive to 
reduce the inclusion of late reverberant energy in the measurement 
results.  For this to be effective, the complex values of the transfer 
functions must be averaged.  This technique is referred to as 
“vector averaging”, or “complex averaging”  [4]. 
 
When acoustical measurements are conducted in-situ, some 
amount of variability of arrival times will be observed.  When 
making measurements at long distances outdoors (i.e., 100 m or 
more), arrival time variability of 5 to 20 ms is not unusual. Even in 
large indoor venues, the variability might be on the order of one or 
two milliseconds.   
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The effect of arrival time variability is similar to the interpolation 
illustrated in Figure 2.  Successive measurements interfere, 
resulting in a misleading reduction in high frequency levels.  
Consequently, complex averaging has only been practicable 
indoors, at distances up to 50 meters or so.    
 
Complex averaging can be carried out using the interpolation 
algorithm described in this paper.  Using this technique, the 
measurement process becomes tolerant of arrival-time variability, 
and a better figure for the arrival time itself can be determined.  
The benefits of complex averaging can then be realized outdoors 
and in large venues. 
 
2.2  DSP Filters for Loudspeaker Steering 
 
When the interpolation algorithm was first conceived, a number of 
reasonableness tests were performed.  One of these tests was to 
interpolate between some standard high-pass and low-pass filter 
types.  If the magnitude, phase, and impulse response all appeared 
to be reasonably similar to the input functions, it would support the 
efficacy of the new method. A surprising result was observed.   
 
When a second-order Butterworth filter and a fourth-order 
Butterworth filter are interpolated with a ratio of 0.5, the result is 
an exact match in both magnitude and phase to a third-order 
Butterworth filter.  Similar results are obtained between orders of 
Bessel filters.  The interesting aspect of this observation is that the 
essential behavior that characterizes a particular filter type survives 
interpolation.  An interpolation between two maximally flat 
(Butterworth) filters is another maximally flat filter. 
 
By extension, it stands to reason that fractional-order filters can be 
defined by geometric interpolation; and that these fractional order 
filters will also share the essential character of the filter type.  
Experiments have verified that this presumption is true.  A 3.5-
order Butterworth filter, for example, has an impulse response that 
rings slightly longer than a 3rd-order filter, and slightly shorter than 
a 4th-order filter.  It has a slope of 21 dB per octave. 
 
While continuously variable low-pass and high-pass filters might 
prove useful to designers of multi-way loudspeakers, a more 
interesting value of such a filter set is in loudspeaker steering.  It 
has been found that the smoothest steered directional response is 
obtained with a programmed-optimizer and high-precision 
complex polar data [5].  Unfortunately, the order of a low-pass 
filter was previously an integer-valued function.  It was not 
productive to allow an optimizer to change it, because its effect on 
the result was discontinuous.  Implementing continuously variable 
filters could lead to better optimization results. 
 
3 CONCLUSIONS 
 
A new transfer function interpolation algorithm has been 
presented.  This algorithm produces better estimates than linear 
interpolation when the transfer functions being interpolated include 
pure delay.  The new algorithm enables complex polar data to be 
interpolated with sufficient accuracy for loudspeaker interference 
calculations; and it allows complex averaging to be employed in 
outdoor acoustical measurements, despite the presence of 
changeable wind.  Fractional order high-pass and low-pass filters 
were proposed, based on interpolation of the familiar types. 
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