

AH96

High Efficiency Full-Range Coaxial Horn

Overview

The AH96 is a bi-amplified 2-way, high sensitivity, arrayable coaxial horn loudspeaker that provides a precise 90° x 60° pattern with control to below 300 Hz, low frequency extension to 76 Hz, and extremely high output with modest amplifier power. Its unique **Compression Head**[™] horn architecture provides exceptional low frequency loading to its twin 10-inch low frequency compression drivers, while a pair of **Oculus**[™] phase plugs extends the 10s' high frequency response to smoothly mesh with a 4 inch diaphragm high frequency compression driver. The AH96's unique 60° compact trapezoidal shape allows it to be deployed with its trapezoidal profile vertically oriented (90°H x 60°V) for stand-alone use, in distributed systems, or in vertical arrays; or with its trapezoidal profile horizontally oriented (60°H x 90°V) for use in horizontal tightpacked arrays.

Sound, innovative acoustical design combined with Fulcrum Acoustic's \mathbf{TQ}^{m} processing leads to exceptional clarity and precise transient response, even at very high sound pressure levels. The required digital signal processing can be provided by one of many supported platforms.

The AH96 is particularly effective in acoustically challenging spaces where broadband pattern control is necessary, and in applications requiring high acoustic output and high fidelity. Its **Compression Head**[™] horn architecture provides easy access to the drivers, so the AH96 can be conveniently serviced while flown. Its clean aesthetic and relatively compact size complements many architectural styles, which facilitates acceptance by interior designers and architects. This makes it the perfect choice for houses of worship, sports facilities, theaters, night clubs, theme parks, and more.

Performance Specifications¹

Operating Mode

Bi-amplified w/ DSP

Operating Range² 76 Hz to 20 kHz

Nominal Beamwidth

90° x 60°

Transducers

LF: 2x 10.0" ceramic magnet cone driver, 3.0" voice coil HF: 4.0" titanium diaphragm, neodymium magnet compression driver

Power Handling @ Nominal Impedance ³

LF: 75 V / 700 W @ 8 Ω HF: 40 V / 200 W @ 8 Ω

Nominal Sensitivity @ Input Voltage ⁴ (whole space) LF: 108 dB @ 2.83 V HF: 108 dB @ 2.83 V

Nominal Maximum SPL (peak / continuous) LF: 143 dB / 137 dB HF: 137 dB / 131 dB

Equalized Sensitivity @ Input Voltage ⁵ 106 dB @ 2.83 V

Equalized Maximum SPL (peak / continuous)⁶ 141 dB / 135 dB

Recommended Power Amplifiers

LF: 700 W to 1400 W @ 8 Ω HF: 200 W to 400 W @ 8 Ω

Physical Specifications

Connections (2) Neutrik NL4 Speakon Pin 1+/-: LF Pin 2+/-: HF

Mounting / Suspension Points

(16) M10 x 1.5 eye bolt angle points, (2) M12 x 1.75 yoke points

Dimensions / Weight

See page 5

Finish

Black painted enclosure w/ matte black grille, or White painted enclosure w/ matte white grille

Options

Terminal strip input, Custom color finish, Weather-resistant (WR) enclosure

Axial Processed Response (dB)^{7,9}

Axial Processed Phase Response (degrees)^{7, 10}

Impedance (ohms)

Vertical Off Axis Response^{7, 11}

Horizontal Polar Response (30 dB Scale, 6 dB per Major Division)

Vertical Polar Response (30 dB Scale, 6 dB per Major Division)

0

0

Technologies

The AH96's **Compression Head**[™] horn architecture couples a trapezoidal enclosure housing a pattern-control horn bell and rear-facing 10 inch drivers, with a "compression head" – a removable acoustical labyrinth resembling the cylinder head of an engine. The compression head accurately positions two **Oculus**[™] phase plugs in front of the 10 inch cones, and delivers their output coherently to the entry of the horn bell, by way of an integral folded horn throat.

This unique arrangement allows a horn with an effective length of 1.0 m (39.3 in) to be housed within an enclosure with a depth of only 0.54 m (21.3 in). Further, it allows the low frequency drivers and horn throat to fit completely within the vertical envelope of the horn

Connection Diagram

bell; which in turn allows the angled top and bottom walls of the enclosure to double as the vertical walls of the low frequency horn. In tight packed arrays, the walls of adjacent AH horns are perfectly parallel and separated by just two thicknesses of birch plywood, providing the most ideal array geometry possible.

The **Oculus**^m phase plug employs two radially asymmetrical slots, precisely shaped and positioned to gather the pressure from the 10 inch driver's hemispherical compression chamber and deliver it in planar phase to a rectangular horn throat. The rectangular output of the phase plug is only 6.3 cm (2.5 in) wide, which allows the sound waves to pass through the compression head's two 90 degree bends without any loss of sound power.

Mechanical Specification Drawings

2D and 3D DXF dimensional drawings are available for download at www.fulcrum-acoustic.com/support.

Notes

¹ **Performance Specifications** All acoustic specifications rounded to nearest whole number. External DSP with Fulcrum Acoustic-provided settings is required to achieve the specified performance.

² Operating Range The frequency range within which the processed response is within 10 dB of the average.

³ Power Handling Based on the AES power handling of the transducers.

⁴ Nominal Sensitivity The 1-meter-referenced SPL produced by a 1 watt band limited pink noise signal, with no processing applied.

⁵ Equalized Sensitivity The 1-meter-referenced SPL produced when an EIA-426-B signal is applied to an equalized loudspeaker system, at a level which produces a total power of 1 watt, in sum, to the loudspeaker subsections.

⁶ Equalized Maximum SPL The 1-meter-referenced SPL produced when an EIA-426-B signal is applied to an equalized loudspeaker system, at a level which drives at least one subsection to its rated power.

⁷ Resolution All response graphs are subjected to 1/6 octave cepstral smoothing with a gaussian weighting function.

⁸ Axial Sensitivity The SPL plotted against frequency for a 1 watt swept sine wave, referenced to 1 m with no signal processing.

⁹ Axial Processed Response The axial magnitude response with recommended signal processing applied.

¹⁰ Axial Processed Phase Response The axial phase response with recommended signal processing applied, and latency removed.

¹¹ Horizontal / Vertical Off Axis Responses The magnitude response at various angles off axis, with recommended signal proceessing applied.

¹² Beamwidth The angle between the -6 dB points in a loudspeaker's polar response.

¹³ Directivity Index (D_i) The ratio of the on-axis sound pressure squared to the spherical average of the sound pressure squared at a particular frequency expressed in dB. To convert the directivity index to directivity factor (Q) use the formula 10^{Di/N}.

Drawing is reduced. Do not scale.

product specification, weather-resistant (WR) version

Drawing is reduced. Do not scale.